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Abstract—Autonomous cars are well known for being vulner-
able to adversarial attacks that can compromise the safety of the
car and pose danger to other road users. To effectively defend
against adversaries, it is required to not only test autonomous
cars for finding driving errors but to improve the robustness of
the cars to these errors. To this end, in this paper, we propose
a two-step methodology for autonomous cars that consists of
(i) finding failure states in autonomous cars by training the
adversarial driving agent, and (ii) improving the robustness of
autonomous cars by retraining them with effective adversarial
inputs. Our methodology supports testing autonomous cars in a
multi-agent environment, where we train and compare adversar-
ial car policy on two custom reward functions to test the driving
control decision of autonomous cars. We run experiments in a
vision-based high-fidelity urban driving simulated environment.
Our results show that adversarial testing can be used for finding
erroneous autonomous driving behavior, followed by adversarial
training for improving the robustness of deep reinforcement
learning-based autonomous driving policies. We demonstrate that
the autonomous cars retrained using the effective adversarial
inputs noticeably increase the performance of their driving
policies in terms of reduced collision and offroad steering errors.

Index Terms—autonomous car, self-driving car, autonomous
driving, multi-agent, adversarial testing, AI testing, simulation
testing, deep reinforcement learning, robustness

I. INTRODUCTION

Autonomous cars (ACs, also known as self-driving cars)
are complex technologies that are prone to failures [1]. ACs
integrate deep learning based software, which is known to be
difficult to validate [2] [3]; yet, testing and validating ACs
is indispensable for their deployment in practice [4] [5] [6].
While there has been progress made by researchers on testing
AI-based models [7] [8], testing of ACs is another complex
area to tackle, due to several reasons.

First, a lot of research has been proposed on scenario and
test case generation [9] [10] [11] [12] [13] and input valida-
tion [14] [15] [16] [17] [18] for testing and validating AC
driving models. While such approaches can expose failures in
ACs, they are only focused on error detection and not correc-
tion. There is limited research work on analyzing the failed AC
driving systems for understanding out-of-distribution scenes
and edge cases that need to be induced in the training of AC

models. Therefore, there is a need for a comprehensive AC
testing methodology able to not only discover errors in AC
driving models but also improve the performance of failing
AC models given the same attacking inputs. This would help
in overcoming existing errors and improving robustness in the
evolving AI-based AC systems.
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Fig. 1: Illustration of the first step of the MAD-ARL frame-
work, where adversary is driving AC under test into failure
states.

Second, existing research efforts often address AC testing
in simplistic evaluation scenarios. For example, AC testing is
often considered as a single-agent problem, where only one car
is taken as a system under test (SUT) [9] [19] [20] [17] [18].
While a single-agent self-driving environment still has open
challenges, there is a need to advance and test a multi-agent
self-driving, as it represents a more realistic environment. In
the near future, multiple ACs will co-exist on the road, and the
more such cars start interacting with each other, as well as with
human drivers, the more complex their testing becomes [21].
Another type of simplistic scenario is validating ACs in lane
keeping [11] [22] and mixed traffic systems [23] simulated en-
vironments. Existing industrial-grade AC testing uses vision-
based end-to-end driving systems where ACs are tested on the
high dimensional stream of inputs in a partially observable
environment, unlike in lane-keeping simulated environments
where such scenarios rely on low dimensional inputs and a
fully observable environment for making driving decisions.
Moreover, multi-agent driving environments consider coop-
erative and dependent driving agents, while the majority of
AC research considers driving agents as independent and non-
communicating competitive agents. Recent work [23] made
progress toward testing connected and automated vehicles by



injecting adversarial noise in a mixed-traffic-based network
environment. However, this work is of limited practical use as
it does not consider multiple non-communicating AC agents.
Another example of a simplistic evaluation scenario is testing
of rule-based driving systems in a simulated environment [24]
[25]. Such driving systems are based on deterministic logic and
do not scale to corner cases, unlike ACs based on deep learning
systems. One more type of simplistic evaluation scenario
is offline testing of deep learning based AC models [26].
Offline testing involves validating the performance and control
decisions of a vision-based AC model by only using datasets
of urban simulated driving scenarios, collected by humans.
Even though offline testing contributes to the machine learning
and autonomous driving (AD) community, it is very restricted
to a single-agent setting (offline testing). Adding multi-agent
actions induced by other driving policies in a non-stationary
environment [27] is a very crucial and new area to tackle in
the AC driving and testing community.

Third, deep reinforcement learning (DRL) algorithms are
extensively used in training vision-based safe AC models in
urban driving environments [28] [29] [30] [31] [32]. One way
to test their driving behavior is using adversarial RL (ARL)
since DRL is proven to be vulnerable multiple times against
adversarial attacks. Existing research suggests that ARL-based
agents can be effective in exposing vulnerabilities of DRL-
based agents in a blackbox manner [33]. However, the idea has
been explored in a simplistic driving environment [24] [23].
In our work, we make use of ARL for discovering effective
attacking inputs that we further use to improve the robustness
of DRL-based AC policies in a complex non-communicating
vision-based urban driving environment. Specifically, we in-
troduce ARL as part of a driving simulation in order to add
adversarial actions against the AC policies under test. By
doing so, we show not only find failure scenarios of the
DRL-based ACs interacting with the adversarial drivers but
to leverage effective adversarial actions to improve the AC
driving robustness.

To address these three challenges, in this paper we pro-
pose a framework ‘Multi-Agent Driving with Adversarial
Reinforcement Learning MAD-ARL’ which is a novel ap-
proach for improving the robustness of non-communicating
multi-agent ACs using an adversarial agent in an urban driving
scenario. In the first step, we train an adversarial agent car that
aims to create natural observations that are adversarial for the
ACs under test. Using the trained adversary, we test multi-
agent policies of ACs under test, with the goal of exposing
faults in the cars’ driving policies as illustrated in Figure 1.
In the second step, we retrain the ACs under test with the
adversarial policies to defend against adversarial attacks. The
results are compared with the baseline autonomous models
(adversary-free trained policies) to evaluate the effectiveness
of the retraining strategy as a defense against adversarial
attacks. In our experiments, we demonstrate that a trained
adversarial player can improve the robustness of more than
one vision-based AC policy in terms of fewer collisions and
offroad steering accidents. The main idea is to use adversarial

examples beyond testing purposes to improve the robustness
of ACs, since adversarial attacks are usually not considered
when AC models are being trained in urban driving scenarios.

The key research contributions in this paper are:
1) Proposing a two-step methodology for finding failure

scenarios in ACs and improving the robustness of ACs
given the effective test scenarios.

2) Introducing a novel DRL framework for testing
and improving driving policies of independent non-
communicating agents in a multi-agent AC environment.
The implementation of the framework is open 1 and
reusable, which supports the reproducibility of research
in the AD domain.

3) Designing an RL-based adversarial agent that can be
generalized for testing more than one AC driving policy
by only training against a single victim AC.

4) Designing an adversary that can effectively drive an AC
into error states by creating natural (i.e. realistic) obser-
vations for the AC’s driving policies, without whitebox
access to its input state.

5) Experimentally demonstrating that retraining DRL-
based AC driving policies using adversarial driving
models can be an effective defense against adversarial
attacks.

II. RELATED WORK

The majority of related work has focused on generating test
scenarios for discovering errors in ACs and adversarial testing
of ACs. The main limitations of these works are the lack of
focus on improving the robustness of ACs once errors are
discovered, as well as simplistic evaluation conditions. Next,
we summarize the main approaches, discussing their benefits
and limitations.

A. Test Scenario Generation for AC

Authors in [14] use GANs to generate synthetic images
to validate the driving robustness of deep learning-based
autonomous driving systems. They also use metamorphic
testing to check the consistency of the model outputs against
different types of synthetic images. Another close work [15]
proposes a systematic testing tool for evaluating DNN-based
AC models. They do so by generating test cases using real-
world conditions such as rain and lightning conditions. They
perform DNN logic coverage by adding transformations to test
inputs within Udacity self-driving car challenge simulator [34].
Similar to [14], they also use domain-specific metamorphic
relations to find fault behaviors of DNN. While the proposed
work has achieved great results, it is limited in way that the
driving scenarios are only tested in a single-agent environment.
Also, both [15] and [14] would benefit from adding the same
synthetic images in the retraining of the tested DNN AC
models to compare the robustness with the baseline models.

The authors in [11] use a search-based testing technique to
automatically create challenging virtual scenarios for testing

1 https://github.com/T3AS/MAD-ARL



self-driving cars. These scenarios are used to test AI driving
models such as DeepDriving [35] to perform systematic testing
of lane-keeping systems. While the work contributes to having
more complex evaluation scenarios, it does not address the
problem of AC testing in a realistic multi-agent driving envi-
ronment. Authors in [10] use Bayesian optimization for test
case generation for ACs. The proposed work learns parameters
using the system’s output to create test case scenarios that lead
AC into failure states. While the authors are able to identify
test cases for complex black boxes like autonomous systems,
the work lacks complex driving scenarios with more than one
AC in the same environment for testing purposes.

A thorough case study by authors in [26] performs a com-
parative study of the pros and cons of testing deep learning-
based AC models in offline datasets versus online simulation
testing. Offline testing focuses on prediction errors against the
dataset, while online testing looks for safety violations within
driving scenarios. The tests are performed using a pretrained
Udacity car simulator driving model. As a limitation, the work
needs an extension of multi-agent testing configurations within
online and offline driving scenarios to observe which method
will be more beneficial for multi-agent ACs testing. Authors
in [36] use OpenStreetMap traffic simulator SUMO to suggest
a workflow for generating a collection of challenging and
safety-critical test scenarios for the safety validation of motion
planning algorithms in automated vehicles. As a limitation, the
work requires multi-agent AC testing to take advantage of the
publicly available generated scenarios.

Authors in [9] propose an automated fuzzing framework
to produce AC safety violation driving scenarios. Using the
industrial-grade autonomous driving platform Baidu Apollo,
they use domain knowledge of vehicle dynamics and genetic
algorithms to find failure scenarios. The experiments are
performed in a partial multi-agent environment with one AC
under test driving alongside non-AC traffic, as non-players.
As a limitation, the work does not address the problem of
improving the robustness of the same ACs using industrial-
grade urban driving simulators. Furthermore, the work could
benefit from adding more than one AI-based AC for testing.
Another work in [19] proposes a programmatic interface that
enables designing parameterized environments and test cases
for ACs. These test parameters control the behavior and
positioning of various actors alongside AC under test, and
support test input generation strategies. While the experiments
are performed by training the neural network-based driving
models, the work is limited to a single-agent AC environment.
Also, the work could benefit from parameterized environments
for generating edge cases that can increase the robustness of
ACs. Furthermore, authors in [37] propose a whitebox method
for testing ACs by triggering as many neurons in the driving
model as possible for finding failure scenarios. They pose
an optimization problem and apply gradient ascent over the
results of test inputs in order to maximize the chance of finding
corner cases. As a limitation, the driving scenarios are only
tested in a single-agent environment. In contrast, our work is
focused on blackbox adversarial testing of ACs in a multi-

agent driving environment.

B. Adversarial Testing of ACs

Recent work [23] proposes to use RL-based driving agents
to test connected cars by perturbing both the inputs and outputs
of a car during training. However, this approach targets mixed-
traffic driving with a single AC and multiple human-driven
cars, thus it does not consider complex scenarios having more
than one non-communicating AC agent. Another work [24]
performs adversarial RL for testing a multi-agent driving
environment by training more than one adversarial RL agent
against one rule-based driving model. While the results look
promising, the approach only covers the cases where the
trained adversarial cars are exposed to a single non-AI model.
As another limitation, the approach has not been evaluated
on more complex adversarial driving scenarios, such as T-
intersection, which we target in our work.

Another work [22] uses RL to stress-test ACs in a simulated
environment. The extension of this work [25] proposes the
idea of reward augmentation for increasing the search space
and also finding failure cases in driving policies. Compared
to our work, they lack multi-agent test cases even on a small
scale. Besides, the work is tested neither in a vision-based
simulator nor in real-world driving conditions. Furthermore,
while the work improves driving conditions for experiments,
it uses adversarial perturbations as noise in the simulation
model itself. In contrast, our work adds perturbations by the
adversarial car’s policy, thus adding adversarial actions as
example trajectories for improving AC’s driving policies.

Authors in [20] proposes a Bayesian optimization-based
method for testing ACs. Their method involves creating adver-
sarial scenarios in a Carla-based urban driving simulation [38]
to expose the weaknesses of autonomous driving policy. An-
other work [17] [18] also uses an optimization technique for
producing physical attacks on driving lanes, in order to attack
vision-based driving models. Compared to our work, these
works are lacking multi-agent AC scenarios. Authors in [13]
use a GAN model to generate adversarial objects able to attack
LiDAR-based driving systems. Another work [39] uses GAN
to apply metamorphic testing to CNN-based driving models.
Authors in [40] propose a stress testing methodology for
LiDAR based perception. Using a real-world driving dataset,
they use various weather conditions to test the performance
of autonomous driving systems. However, neither of these
approaches has been tested in an RL-based multi-agent AC
environment.

III. MAD-ARL FORMULATION

Our work addresses the problem of adversarial testing of
autonomous cars in a multi-agent driving environment for the
purpose of (i) finding failures in AC driving models, and (ii)
improving the robustness of AC driving models against these
failures.

We model our problem as a 2-player Markov game [41],
where one type of a player is the autonomous driving agent
under test, which we call a victim, and the other player is



the adversarial driving agent, which we call an adversary,
and who is trying to exploit the weakness of the victim. We
denote our victims and adversary agent as T1, T2 and α,
respectively (we consider two ACs under test). The Markov
game M = (S,O, (AT1, AT2, Aα), P, (RT1, RT2, Rα)) in a
multi-agent environment consists of O set of state observations
and AT Aα represents action set. P is a joint state transition
probability function P : S ×AT ×Aα 7→ 4(S), where 4(S)
defines the probability distribution of the next state. Reward
function R is based on maximizing the cumulative sum of
rewards as R : S × AT × Aα 7→ R. Each player in the
set {T1, T2, α} depends on the current state observation to
perform actions and reach the next state while receiving the
desired rewards.

A. Finding Failures in AC Driving Policies

The adversary and victim agents work as independent non-
communicating competitive players. This means that they
have no white box access to each other’s input state, as well
as no shared information to weights parameters. The victim
agents are first given the shared environment to train their
policies πT1 and πT2 in the absence of an adversarial player.
The adversary, however, is provided access to the action state
sampled from πT . Since the adversary’s policy πα is trained
using pre-trained AC policies, we assume that the victim
players have fixed weights during adversarial policy training.
This represents a scenario where RL-trained policies for ACs
are deployed to the real world and their weights are fixed in
order to train any adversarial agent for testing. At this point,
the Markov game consisting of two players can be treated as
one-player MDP problem, since the victim policy πT is held
fixed.

The goal of the adversarial player is to learn a policy πα
maximizing the sum of discounted rewards:

πα =

∞∑
t=0

γtRα(s
(t), a(t)α , s(t+1))

where aα ∼ πα(.|s(t)) are actions sampled from the
adversary policy and s(t+1) ∼ Pα(s

(t), a
(t)
α ) is the next state

given the transition probability. Since the current problem is
scoped as a model-free approach, the MDP dynamic model
Pα is unknown.

When the adversarial policy is trained, we use it to find un-
common behavior patterns for the victim’s players by adding
natural observations (see Section IV) for the victim DRL
policies πT .

B. Improving the Robustness of AC Policies by Retraining

Once we observe the effectiveness of the adversary in find-
ing failure test cases for the ACs, we retrain the victim models
by unfreezing their weight parameters, while keeping the
trained adversarial player as part of the training environment.
This leads to improved robustness which in terms of DRL
performance is its resistance towards out-of-distribution inputs
and adversarial attacks [42]. Thus, the goal of the autonomous

agents {πT1, πT2} is to maximize the sum of the discounted
reward independently, that is:

πT1 =

∞∑
t=0

γtRT1(s
(t), a

(t)
T1, s

(t+1))

πT2 =

∞∑
t=0

γtRT2(s
(t), a

(t)
T2, s

(t+1))

IV. MAD-ARL FRAMEWORK

In this section, we present the proposed framework and
the methodology for improving the robustness of AC driving
policies in a multi-agent environment. An overview of the
two-step methodology using the MAD-ARL framework is
illustrated in Figure 2.

In the MAD-ARL framework, we consider two victim
driving agents and one adversary driving agent. An agent is
an entity that is able to observe the environment and perform
actions in order to make an intelligent decision in the given
environment. The observations of our multi-agent driving
environment for the victim agents are manipulated by adding
an adversarial agent in the environment. The adversarial agent
is trained to take actions such to create observations that
appear natural to the victim agents while being adversarial
in nature. As an example, the adversary is learning to steer
offroad most of the time while crossing the intersection. Such
unusual behavior will act as an adversarial noise to the visual
observations of victim ACs. The same framework is utilized to
retrain the weights of the victims against the adversary in order
to increase robustness and improve driving performance by
lowering the number of collisions and offroad steering failures.

A. Proximal Policy Optimization

Our AC agents use Proximal Policy Optimization
(PPO) [43] as a policy gradient method to learn a driving
policy by encountering a simulated environment in each
training episode. The PPO helps perform on-policy learning
within simulation instead of a dataset (replay buffer) type of
learning. It also helps focus on policy updates with stability
while learning over a change in data distributions, as well as
address a large hyperparameter initializing space.

The details of the hyperparameters selected for the training
of the victim and adversary driving agents are given in Table I.

TABLE I: Hyperparameters for the PPO DRL model.

Stage Hyperparameter Value

Gathering Experience
Minibatch Range 64
Epochs per Minibatch 8
Batch Mode Complete Episodes

Updating Policy
Discount factor (γ) 0.99
Clipping (ε) 0.3
KL Target 0.03
KL Initialization 0.3

Other Hyparameters Value Loss Coefficient 1.0
Entropy Regularizer 0.01



Fig. 2: Illustration of MAD-ARL framework for improving the robustness of AC driving policies in a multi-agent environment.
Each agent receives an input image of 84x84x3 which is passed to a PPO-based DRL model. The actions are selected at the
output layer of every agent and are performed in the next time step of the simulation in order to obtain reward and a new
observation state. Top row of the diagram displays the first step where we find failure scenarios of the victim policies, whereas
the bottom diagram shows the second step that involves retraining of victims. Both steps of the framework are performed in
an urban driving simulated environment.

B. Deep Neural Network Model

The summary of the DRL architecture, including the input,
hidden, and output layer is displayed in Figure 2. The input
state S ⊂ R of our DRL algorithm receives a partial observa-
tion of 84x84x3 dimension images from the camera sensors.
Cameras are mounted in front of each driving model which
provides feeds as an input state observation to the autonomous
and adversary cars model at each step of the simulation. The 3-
dimensional input images are passed through convolutions and
hidden layers to reach the output layer for control commands.

At the output layer, we have nine discrete values as the
action space which are used by each driving agent to make
control decisions. All of the discrete actions can be summed
into three main actions: Steer, Throttle, and Brake.

C. Reward Functions

Each agent is following MDP described in the MAD-ARL
formulation, and therefore, at each time step, the driving
models collect trajectories of (S,R,A). R is the reward gained
in return for the actions chosen by the driving car’s policy
function, given the input observations.

1) Victim Reward Function: The victim policies are trained
as driving ACs with the goal to safely reach as close to the

desired destination as possible. The victim agents reward can
be described as:

RV ictim = (Dt−1 −Dt) + (Ft) /10− 100.0 (CVt + COt)

−0.5 (IOt + IOLt) + β

Distance Forward Speed Collision

Offroad steering

where D is the distance covered, F is the forward speed of
the agent, CV and CO are the boolean values telling whether
there is any collision with other vehicles and environment
objects, and IO along with IOL refers to driving offroad at
the intersections and outside the desired lane represented as
boolean. At the end of the equation is a constant β used to
encourage driving in a desired ground truth lane. From the
above equation, it is clear that the victim driving policies are
sensitive toward any offroad steering errors and collisions.

2) Adversary Reward Function: We are defining two dif-
ferent types of reward functions for the adversarial player
to see which one performs better in testing and retraining
the policies of the victim ACs. The two adversarial reward
functions associated with the policies πα1 and πα2 are named
Rcollision and Roffroad. The motivation behind two different
reward based adversaries is to show that the adversary with
no collision and minimal offroad steering reward function



is enough to create effective adversarial actions than the
collision-focused adversarial agent.
Rcollision aims to maximize the rate of collision and offroad

steering during the adversarial training. Rcollision is formu-
lated as:

RCollision = (Dt−1 −Dt) + (Ft)/10

Collision and Offroad steering in RCollision Adversary︷ ︸︸ ︷
+5.0 (CVt + COt) + 0.05 (IOt + IOLt)

Roffroad on the other hand aims to maximize the rate of
offroad steering, and is thus formulated as:

ROffroad = (Dt−1 −Dt) + (Ft)/10

Offroad steering only in
ROffroad Adversary.︷ ︸︸ ︷

+0.05 (IOt + IOLt)

D. Hyperparameters

The hyperparameters used in different phases of training
of all ACs are shown in Table II. During the testing phase,
explained in Section VI, we run 50 total episodes, each having
2000 simulation steps per driving agent.

TABLE II: Hyperparameters for the training of the baseline
victim AC models, the adversarial model, and retrained victim
AC models

Hyperparameter Baseline Adversarial Retrained Victim

Total Training Steps 300672 57728 133888
Total Training Episodes 610 101 306
Learning Rate 0.0006 0.0006 0.0006
Batch Size 128 128 128
Optimizer Adam [44] Adam Adam

The details of the hyperparameters for all the AC and
adversary agents are provided in the GitHub repository 2.

V. EXPERIMENTS

The experiments aim to demonstrate the effectiveness of the
proposed framework for testing and improving driving policies
in a multi-agent car environment. To this end, first, we train a
single adversarial driving agent against one victim AC agent
to test more than one victim AC driving policy. The purpose of
the adversary is to expose errors in the driving policies of the
AC agents, such as the inability to avoid collisions and offroad
steering accidents. Later we retrain the AC agents using the
adversarial inputs and evaluate how much their driving policies
improved compared to their baseline performance.

Specifically, the research questions aim to evaluate:
RQ1: How effective is the adversarial driving policy in

finding failure driving scenarios in victim ACs?
RQ2: Does retraining the victim ACs using the adversarial

inputs improve the agent’s performance in terms of reduced
collisions and offroad steering errors?

2https://github.com/T3AS/MAD-ARL

A. Evaluation Metrics

We evaluate the driving performance of victim ACs using
the following metrics:
• CV : rate of collision with another vehicles
• CR: rate of collision with any other road objects
• OS : rate of offroad steering from a ground truth driving

lane
• TTFC: time it takes to have the first collision
To evaluate the effectiveness of the adversarial driving

policy in finding failure driving scenarios in victim ACs,
we compare the AC’s baseline performance (no adversary
in the environment) with its performance when driving in
the environment with an adversary present. To evaluate the
effectiveness of adversarial retraining as a strategy to improve
the driving performance of victim ACs, we also compare the
performance of victim AC’s performance and retrained victim
AC’s performance when driving in the environment with an
adversary present.

B. Experimental Setup

We use Town 3 scenario provided by the Python Carla API
and Macad-gym [45] in our partially-observable urban-based
driving environment. This environment has three independent
non-communicating agents spawned close to the T-intersection
throughout the training and testing steps, where two are the
victim ACs T1 and T2, and one is the adversarial agent α.
The choice of T-intersection as a driving scenario is based
on its higher complexity for an AC agent to handle, as the
adversarial agent can be easily faced by victim policies during
testing episodes.

The goal of T1 and T2 is to drive straight across the
intersection without errors, while α aims to take a left turn
in the same driving situation. The starting and ending state
locations of each driving agents are:
• T1 start: [188, 59, 0.4], end: [167, 75.7, 0.13]
• T2 start: [147.6, 62.6, 0.4], end: [191.2, 62.7, 0]
• α start: [170.5, 80, 0.4], end : [144, 59, 0]

where victim ACs strictly follow the mentioned coordinates as
ground truth to improve their driving policies. On the contrary,
the adversary player is less focused on reaching the desired
destination and aims to deviate towards collision and offroad
steering behavior.

The sequence of the training and testing for victim and
adversary agents are as follows.

1) Training Victim AC Agents for Baseline: We train both
AC policies πT1, πT2 in a multi-agent environment with the
absence of any adversarial policy as shown in Figure 3(a). Af-
ter 610 episodes and 300672 steps mentioned in Section IV-D,
we move towards our first testing phase to record the baseline
performance of both autonomous cars.

2) Training Adversarial Agent: Next, we introduce the
adversarial driving agent. We train its policy πα by providing
the victim AC policy, keeping their weight parameters constant
during the adversarial training phase as shown in Figure 3(b).
The number of episodes for training the adversary agent is kept
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Fig. 3: Illustration of the different phases of experimental
setup. (a) shows the training phase of victim policies in the
absence of an adversarial agent. (b) shows the training phase of
both adversarial policies against one of the victim ACs. While
(c) illustrates Step 1 of the experiments where Rcollision and
Roffroad based adversaries are used to separately test against
victim ACs. The same setup is used to retrain victim ACs for
model evaluation in Step 2.

lower than the number of episodes assigned for the victim’s
baseline model training.

We train the adversarial policy using two different adver-
sarial reward functions, Rcollision and Roffroad, separately, as
shown in Figure 3(b). This helps evaluate which adversarial
agent is more effective in exposing errors in the victim ACs.
We use 101 episodes to train the adversarial policy using both
reward functions.

The performance of the adversarial policies that are indi-
vidually trained is depicted in Figure 4. By training the DRL
policies for 101 episodes, the adversarial policy πα2 trained
on Roffroad reward function converges faster than πα1 trained
on Rcollision. The policy πα2 gets to a stable mean episodic
reward state after crossing half of the training steps, while
πα1 tends to fluctuate throughout the training phase. Still,
both reward-based adversarial policies lead the victim ACs
into error states when tested.

3) Two-step Improvement of the Robustness of Victim ACs:
Step 1: Finding Failure States We test the behavior and
control decisions of both victim AC agents when exposed to
the trained adversarial driving agent and compare the results
with our baseline victim policies. The adversary is able to
learn a generalized agent that is used to simultaneously attack
both victim policies in a shared driving scenario as displayed
in Figure 3(c). Using the evaluation metrics described in
Section V-A, we compare the driving behavior of the victim
ACs as baselines against adversary agents. The results are
described in Section VI.

Step2: Retraining Victim ACs for Improved Robustness
Finally, we unfreeze the weights of the victim AC agents
to retrain their end-to-end driving policies by keeping the
adversarial agent in the same environment. Since there are
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Fig. 4: Scatter plot for showing the model training performance
of the adversary agent using two reward functions. Reward
values are averaged during each adversary’s training episode.

two different adversarial reward-based policies involved, the
retraining of the victim ACs is done twice separately, as
depicted in Figure 3(c). After the retraining is done, we test
the victim ACs to see how much they improved compared to
their baseline performance.

C. Simulation Setup

We use RLlib [46] from Ray framework which is an open
source project providing a very fine-tuned and scalable RL
implementation interface. We also use Carla [38] urban driv-
ing simulation framework for training, testing, and validating
ACs. For integrating Carla and Open AI’s Gym toolkit in a
multi-agent urban driving environment, we utilize open source
platform Macad-gym [45]. We are also using Tensorflow [47]
version 2.1.0 within the RLlib library for creating DRL based
model architectures.

VI. RESULTS & ANALYSIS

In this section, we present and discuss experimental results,
which are made available in the GitHub repository 3.

A. Effectiveness of Adversarial Driving Policy in Finding
Failure Driving Scenarios in Victim ACs

We measure the effectiveness of the adversarial driving
policy in exposing failures in victim ACs in terms of four
metrics: CV , CR, OS , and TTFC. For CV , CR, and OS ,
we calculate the percentage of error within each episode (as
a value between 0 and 1). In each episode, we run 2000
simulation steps and at the end of 50 episodic test runs, we
compute the average error rate for each metric across all the
episodes. The results are shown in Figure 5 and the average
error rate is presented in Table III. For the first three metrics
in the table CV , CR, OS victim policies having values closer
to 0 are performing error-free driving, whereas values closer
to 1 indicate a higher failure rate of the victim policy. As for
the fourth metric TTFC, the bottom most row in the table

3https://github.com/T3AS/MAD-ARL



TABLE III: Comparison of the behavior of victim ACs before and after adding adversarial car in the environment, and after
retraining using adversarial policies, in terms of CV , CR, OS , and TTFC metrics, averaged across 50 episodes. Victim ACs
have more collisions and offroad steering errors under the presence of an adversarial agent, compared with baseline victim
models. Retraining victim ACs with adversarial inputs improves their driving policies.

Baseline After Adversarial Training After AC Retraining
Rcollision Roffroad Rcollision Roffroad

Victim 1 Victim 2 Victim 1 Victim 2 Victim 1 Victim 2 Victim 1 Victim 2 Victim 1 Victim 2
Collision with cars 0.0 0.0 0.19468 0.0956 0.5484 0.4048 0.2563 0.3934 0.0831 0.0698
Collision with other objects 0.0184 0.0398 0.0 0.1533 0.6465 0.278 0.0 0.1912 0.0 0.0566
Offroad steering error 0.0929 0.2828 0.1645 0.3769 0.9069 0.9747 0.0425 0.2112 0.0358 0.1688
Time To First Collision (seconds) - - 59.736 27.98 13.8292 14.5 92.1116 113.5248 15.1688 14.23

shows the time in seconds it takes to detect the first collision
in a testing episode.

In the baseline scenario, both victims made no collision with
each other during test episodes. Victim policies made uncertain
decisions by creating collisions with footpaths and performing
offroad steering errors. This is because we are testing the
victim agents more than they have explored the environment
in each episode. Victim 1, which is on the right side of the
scenario, has a better baseline driving policy than Victim 2,
as it has a lower rate of collision and offroad steering.

After introducing the adversarial policies to the environment
(Rcollision and Roffroad), we see that the overall decision
making process of both victim ACs is disturbed and their
driving performance is decreased. Specifically, the rate of
collision with other cars increased for both victims, as they
ended up colliding with each other, as well as with the ad-
versarial agent. Although both adversarial policies are finding
the AC collision failure cases, Roffroad-based policy works
better in this regard, which results in a higher rate of collision
and offroad steering for both victim ACs (colored red in the
table). With only offroad steering actions as adversarial action,
Roffroad-based adversary forced victims into collision with
each other in the T-intersection scenario. Also, due to early
stopping after collision during Rcollision-based policy, the rate
of collision with other road objects has not been detected
much. On the other hand, Roffroad-based adversarial policy
is also able to find trajectories where victims end up hitting
road objects after facing adversarial actions. Furthermore,
both victims encountered more offroad steering errors. Victim
ACs encountering Roffroad-based policy in a driving scenario
ended up taking high percentage of offroad steering mistakes.
Rather than attacking victims aggressively as by Rcollision,
Roffroad-based policy did it better by adding adversarial ac-
tions as natural adversarial observations produced in a shared
driving environment.

In terms of the time to first collision evaluation metric, there
were no collisions in the baseline scenario for both victim
ACs (denoted with dash in Table III). After introducing the
adversarial policies in the environment, collisions occurred
after some seconds. Specifically, Roffroad-based policy drove
victim ACs into collisions earlier than Rcollision-based policy.

In summary, the results of the experiments demonstrate that
introducing an adversarial policy to the environment is an
effective strategy for finding failure driving scenarios in ACs.

B. Improving Victim ACs Performance by Retraining

By retraining the victim ACs using inputs from Rcollision-
and Roffroad-based adversaries, we check whether the ACs’
driving performance improved in terms of reduced collisions
and offroad steering errors, compared to the stage before
retraining. The evaluation results are shown in Table III.
Specifically, the rate of collision with cars and other objects
decreased for the victims retrained using Roffroad-based ad-
versary. The reason is that Roffroad-based adversary provides
adversarial examples for victim ACs by maintaining collision-
free distance, therefore helping victims to learn how to avoid
collisions while crossing an intersection. Rcollision did not
help much during the retraining process of the victim agents.
It is mainly due to its collision-focused driving nature and
thus the victims were unable to learn to avoid collisions with
each other. Victims face collisions that are intentional by the
adversary and most of the time they are unable to recover
from such collisions in the episodic runs. Victim 2, being a
weaker policy among the two ACs, also ended up colliding
with road objects. Similarly, the number of offroad steering
errors is reduced for the victims retrained using Roffroad
based adversarial policy since they slowed down after having
collisions with other cars while retraining against Rcollision,
resulting in less space for improving the offroad steering
behavior.

Victims have neither seen such collision-focused drivers
during baseline training, nor they are prepared for recovery
steps when they face one in retraining. This is usually the case
in training ACs in simulated or real-world datasets. The reason
we have added Rcollision in our experiments is to show that
it is not practical to add collision-focused driving cars around
victims in a multi-agent environment. We need a better and
more efficient framework where not only the RL-based AC
victims are tested but also their robustness is improved.

Furthermore, the results show that the time to detect the
first collision has been increased after retraining with the
Rcollision-based adversarial policy. For the Roffroad-based
adversarial policy, even if the time to the first collision
increased for only one victim AC, the overall rate of collision
has decreased significantly for both ACs. This is because, after
the first collision, the ACs were able to recover from failure
states and continue with the safe driving behavior.
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Fig. 5: Overall performance of victim ACs before and after adding adversarial car in the environment, and after retraining
using adversarial policies, in terms of CV , CR, and OS metrics.

In summary, these results show that the retraining of vic-
tim ACs with adversarial policies helps in increasing the
robustness of victims’ driving performance. Roffroad-based
adversarial policy once again proves to be more effective
in adding better adversarial actions as observations to the
driving scenes of the victims. Victims colliding in the testing
episodes after retraining were able to recover and drive safe
with minimal offroad steering errors. Overall, the results show
that the Roffroad-based adversary is more effective in making
ACs more robust.

We visualize the driving performance of the victim AC
agents before and after retraining in Figure 6. The figure
shows a 2-dimensional aerial view of the victim ACs’ driving
coordinates. Plots (a) and (b) represent the performance when
the victim agents are exposed to the adversary for the first
time, while plots (c) and (d) represent the improvement in their
driving policies as the result of retraining. The plots do not take
a time factor into consideration, which is important to mention
since any victim car overlapping with the adversary does not
necessarily mean a collision state. Plot (a) depicts Victim 1
driving offroad without crossing the intersection, due to the
adversarial agent. Plot (b) depicts a failure scenario where
Victim 2 collides with the adversary and drives offroad. Error
states in these two plots are marked with red stars. Plot (c) and
(d) depict cases of improved (retrained) driving policies of the
victim agents, who are now able to avoid collisions with cars
and other road objects, as well as to stay in the driving lane
while crossing the intersection.

VII. CONCLUSION & FUTURE WORK

In this work, we propose a framework named MAD-ARL
which is a multi-agent driving environment designed for
improving the robustness of autonomous cars using adversarial
driving models. ARL is trained against a victim player in order
to find unwanted driving decisions of autonomous cars that are
also trained on a DRL-based policy. By exposing the same
adversarial car against the victim agents for retraining, the

(a) Victim ACs before retraining (b) Victim ACs before retraining

(c) Victim ACs after retraining (d) Victim ACs after retraining

Fig. 6: 2D visualization of the victim and adversary driving
coordinates. (a) and (b) display two failure scenarios found
while testing victim cars in the presence of an adversarial
agent. (c) and (d) illustrate the same victim policies performing
better once they are retrained with the adversarial policies.

agents show improvements in their end-to-end decision driving
controls, mainly in terms of fewer collisions and offroad
steering errors compared to their originally trained (adversary-
free) policies.

Future Work: This work can be further extended to
ACs operating in mass-traffic scenarios having more cars,
pedestrians, and a traffic light network as part of the multi-
agent environment. In such complex environments, mixed
competitive ACs need to be tested in larger state space for
finding edge cases using adversarial agents. Furthermore, we



plan to investigate how retraining the adversarial agent affects
the performance of victim autonomous cars. We also plan
to explore and compare the robustness of different DRL
algorithms used for autonomous driving research, when they
are exposed to different types of adversaries. Also, we will
extend current driving scenario with different training and
testing episodic steps for evaluating the driving performance
of RL-based models.
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